Jump to content

Recommended Posts

  • Publishers
Posted

Keith Barr was born only months before the historic Apollo 11 landing in 1969. While he was too young to witness that giant leap for mankind, the moment sparked a lifelong fascination that set him on a path to design technology that will carry astronauts farther into space than ever before. 

Today, Barr serves as a chief engineer and Orion Docking Lidar Field Test lead at NASA’s Johnson Space Center in Houston. He spearheads the field testing of docking lidars for the Orion spacecraft, which will carry astronauts to the Moon on the Artemis III mission. These lidars are critical to enabling Orion to autonomously dock with the human landing system on Artemis III — the mission that will land astronauts near the Moon’s South Pole for the first time in history. 

2014-09-17-17-01-53-e1748378812463.jpg?w
Keith Barr prepares for a wind lidar test flight in one of the U.S. Navy’s Twin Otter aircraft in support of the AC-130 Gunship lidar program.

“The Mercury, Gemini, and Apollo missions are some of humanity’s greatest technical achievements,” he said. “To be part of the Artemis chapter is a profound honor.”  

In recognition of his contributions, Barr was selected as a NASA Space Flight Awareness Honoree in 2025 for his exceptional dedication to astronaut safety and mission success. Established in 1963, NASA’s Space Flight Awareness Program celebrates individuals who play a vital role in supporting human spaceflight. The award is one of the highest honors presented to the agency’s workforce. 

With a career spanning over 25 years at Lockheed Martin, Barr is now recognized as a renowned leader in lidar systems—technologies that use laser light to measure distances. He has led numerous lidar deployments and test programs across commercial aviation, wind energy, and military markets.  

In 2019, Barr and his team began planning a multi-phase field campaign to validate Orion’s docking lidars under real-world conditions. They repurposed existing hardware, developed a drone-based simulation system, and conducted dynamic testing at Lockheed Martin facilities in Littleton, Colorado, and Santa Cruz, California. 

In Littleton, the team conducted two phases of testing at the Space Operations Simulation Center, evaluating performance across distances ranging from 50 meters to docking. At the Santa Cruz facility, they began much farther out at 6,500 meters and tested down to 10 meters, just before the final docking phase. 

Of all these efforts, Barr is especially proud of the ingenuity behind the Santa Cruz tests. To simulate a spacecraft docking scenario, he repurposed a lidar pointing gimbal and test trailer from previous projects and designed a drone-based test system with unprecedented accuracy.  

“An often-overlooked portion of any field campaign is the measurement and understanding of truth,” he said. “The system I designed allowed us to record lidar and target positions with accuracy never before demonstrated in outdoor docking lidar testing.” 

img-4416.jpeg?w=2048
Testing at the Santa Cruz Facility in California often began before sunrise and continued past sunset to complete the full schedule. Here, a drone hovers at the 10-meter station-keeping waypoint as the sun sets in the background.

The test stand at the Santa Cruz Facility had once been used for Agena upper stage rockets—a key piece of hardware used during the Gemini program in the 1960s. “We found a Gemini-era sticker on the door of the test bunker—likely from the time of Gemini VIII, the first space docking completed by Neil Armstrong and David Scott,” Barr said. “This really brought it home to me that we are simply part of the continuing story.” 

img-0071.jpg?w=1600
Keith Barr operates a wind lidar during a live fire test in an AC-130 Gunship aircraft. He is seated next to an open door while flying at 18,000 feet over New Mexico in January 2017.

Barr spent more than two decades working on WindTracer—a ground-based Doppler wind lidar system used to measure wind speed and turbulence at airports, wind farms, and in atmospheric research. 

The transition from WindTracer to Orion presented new challenges. “Moving onto a space program has a steep learning curve, but I have found success in this new arena and I have learned that I can adapt and I shouldn’t be nervous about the unknown,” he said. “Learning new technologies, applications, and skills keeps my career fun and exciting and I look forward to the next giant leap—whatever it is.” 

img-0024.jpg?w=2048
Keith Barr stands beside the Piper Cherokee 6 aircraft during his time as a captain for New England Airlines.

Barr’s passion for flight moves in tandem with his pursuit of innovation. Over his career, he has flown over 1.6 million miles on commercial airlines. “I often joke that I’m on my fourth trip to the Moon and back—just in economy class,” he said.  

Before specializing in lidar systems, Barr flew as a captain and assistant chief pilot at New England Airlines, operating small aircraft like the Piper Cherokee 6 and the Britten-Norman Islander.  

He also worked at the National Center for Atmospheric Research, contributing to several NASA airborne missions aimed at unraveling the science behind global ozone depletion.  

dc8loading.jpg?w=2048
Keith Barr boards NASA’s DC-8 aircraft at Ames Research Center in California before heading to Salina, Kansas, to support a 1996 research mission studying how airplane emissions affect clouds and the atmosphere.

As Barr reflects on his journey, he hopes to pass along a sense of legacy to the Artemis Generation. “We are in the process of writing the next chapter of human space exploration history, and our actions, successes, and troubles will be studied and analyzed well into the future,” he said. “We all need to consider how our actions will shape history.” 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA Student Challenge Prepares Future Designers for Lunar Missions
      At NASA’s Johnson Space Center in Houston, the next generation of lunar explorers and engineers are already hard at work. Some started with sketchbooks and others worked with computer-aided design files, but all had a vision of how design could thrive in extreme environments.
      Thanks to NASA’s Student Design Challenge, Spacesuit User Interface Technologies for Students (SUITS), those visions are finding their way into real mission technologies.
      NASA’s Spacesuit User Interface Technologies for Students (SUITS) teams test their augmented reality devices at the Mars Rock Yard during the 2025 test week at Johnson Space Center in Houston.
      Credit: NASA/James Blair The SUITS challenge invites university and graduate students from across the U.S. to design, build, and test interactive displays integrated into spacesuit helmets, continuing an eight-year tradition of hands-on field evaluations that simulate conditions astronauts may face on the lunar surface. The technology aims to support astronauts with real-time navigation, task management, and scientific data visualization during moonwalks. While the challenge provides a unique opportunity to contribute to future lunar missions, for many participants, SUITS offers something more: a launchpad to aerospace careers.
      The challenge fosters collaboration between students in design, engineering, and computer science—mirroring the teamwork needed for real mission development.
      NASA SUITS teams test their augmented reality devices at Johnson’s Mars Rock Yard on May 21, 2025.
      Credit: NASA/Robert Markowitz SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space.
      Keya Shah
      Softgoods Engineering Technologist
      Keya Shah, now a softgoods engineering technologist in Johnson’s Softgoods Laboratory, discovered her path through SUITS while studying industrial design at the Rhode Island School of Design (RISD).
      “SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space,” Shah said. “Whether applied to digital or physical products, it gave me a deep understanding of how intuitive and thoughtfully designed solutions are vital for space exploration.”
      As chief designer for her team’s 2024 Mars spacewalk project, Shah led more than 30 designers and developers through rounds of user flow mapping, iterative prototyping, and interface testing.
      “Design holds its value in making you think beyond just the ‘what’ to solve a problem and figure out ‘how’ to make the solution most efficient and user-oriented,” she said, “SUITS emphasized that, and I continually strive to highlight these strengths with the softgoods I design.”
      Shah now works on fabric-based flight hardware at Johnson, including thermal and acoustic insulation blankets, tool stowage packs, and spacesuit components.
      “There’s a very exciting future in human space exploration at the intersection of softgoods with hardgoods and the digital world, through innovations like smart textiles, wearable technology, and soft robotics,” Shah said. “I look forward to being part of it.”
      Softgoods Engineering Technologist Keya Shah evaluates the SUITS interface design during the 2025 test week.
      Credit: NASA/James Blair For RISD alumnus Felix Arwen, now a softgoods engineer at Johnson, the challenge offered invaluable hands-on experience. “It gave me the opportunity to take projects from concept to a finished, tested product—something most classrooms didn’t push me to do,” Arwen said.
      Serving as a technical adviser and liaison between SUITS designers and engineers, Arwen helped bridge gaps between disciplines—a skill critical to NASA’s team-based approach.
      “It seems obvious now, but I didn’t always realize how much design contributes to space exploration,” Arwen said. “The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.”
      Arwen played a key role in expanding RISD’s presence across multiple NASA Student Design Challenges, including the Human Exploration Rover Challenge, the Micro-g Neutral Buoyancy Experiment Design Teams, and the Breakthrough, Innovative, and Game-changing Idea Challenge. The teams, often partnering with Brown University, demonstrated how a design-focused education can uniquely contribute to solving complex engineering problems.
      “NASA’s Student Design Challenges gave me the structure to focus my efforts on learning new skills and pursuing projects I didn’t even know I’d be interested in,” he said.
      It seems obvious now, but I didn’t always realize how much design contributes to space exploration. The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.
      Felix Arwen
      Softgoods Engineer
      Softgoods Engineer Felix Arwen tests hardware while wearing pressurized gloves inside a vacuum glovebox. Both Arwen and Shah remain involved with SUITS as mentors and judges, eager to support the next generation of space designers.
      Their advice to current participants? Build a portfolio that reflects your passion, seek opportunities outside the classroom, and do not be afraid to apply for roles that might not seem to fit a designer.
      “While the number of openings for a designer at NASA might be low, there will always be a need for good design work, and if you have the portfolio to back it up, you can apply to engineering roles that just might not know they need you yet,” Arwen said.
      SUIT teams test their augmented reality devices during nighttime activities on May 21, 2025.
      Credit: NASA/Robert MarkowitzNASA/Robert Markowitz As NASA prepares for lunar missions, the SUITS challenge continues to bridge the gap between student imagination and real-world innovation, inspiring a new wave of space-ready problem-solvers.
      “Design pushes you to consistently ask ‘what if?’ and reimagine what’s possible,” Shah said. “That kind of perspective will always stay core to NASA.”
      Are you interested in joining the next NASA SUITS challenge? Find more information here.
      The next challenge will open for proposals at the end of August 2025.
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Jun 10, 2025 Related Terms
      Johnson Space Center Spacesuits STEM Engagement at NASA Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 5 hours ago 3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
      Article 6 days ago 4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read NASA Knows: What is Lunar Regolith? (Grades 5-8)
      This article is for students grades 5-8.
      The surface of the Moon is covered in a thick layer of boulders, rocks, and dust. This dusty, rocky layer is called lunar regolith.  It was created a long time ago when meteorites crashed into the Moon and broke up the ground. NASA scientists study the regolith to learn more about the Moon’s history. But the smallest parts of the regolith make exploring the Moon very hard! That is why scientists are working to understand it better and to keep astronauts safe during future lunar missions.
      What is lunar regolith like?
      Lunar regolith is full of tiny, sharp pieces that can act like little bits of broken glass. Unlike the dust and soil on Earth, the smallest pieces of regolith have not been worn down by wind or rain. These bits are rough, jagged, and cling to everything they touch – boots, gloves, tools, and even spacecraft!  In pictures it might look like soft, harmless gray powder, but it is actually scratchy and can damage lunar landers, spacesuits, and robots. This makes working on the Moon a lot harder than it looks!
      Is regolith harmful to astronauts?
      The small parts of lunar regolith get stuck on spacesuits and can be brought inside the spacecraft. Once it is inside, it can cause some serious problems. The tiny, sharp pieces can make astronauts’ skin itchy, irritate their eyes, and even make them cough. If it gets into their lungs, it can make them sick. Scientists worry the damage from breathing in lunar regolith could keep bothering astronauts for a long time, even after they are back on Earth. That is why NASA scientists and technologists are working hard to find smart ways to deal with regolith and protect astronauts!
      Can regolith damage NASA equipment?
      Regolith doesn’t just cause trouble for astronauts. It can also damage important machines! It can scratch tools and cover up solar panels, causing them to stop working. It can also clog radiators, which are used to keep machines cool. The small bits of regolith can make surfaces slippery and hard to walk on. It can even make it tough for robots to move around. Unlike Earth’s soil, the Moon’s regolith isn’t packed down. Any time we move things around on the Moon’s surface, we spread the rough, dusty particles around. Can you imagine what a mess launching and landing a spacecraft would make?
      All of this can make exploring the Moon much more difficult and even dangerous!
      What is NASA doing to understand lunar regolith?
      NASA is building many cool technologies to help deal with the harm regolith can cause. One of the tools technologists have already developed is call an Electrodynamic Dust Shield (EDS). It uses electricity to create a kind of force field that pushes the small particles away from tools on the Moon!
      There are many ways NASA is working to understand lunar regolith. One interesting way is by using special cameras and lasers on landers to watch how the regolith moves when a spacecraft lands. This system is called SCALPPS, which stands for Stereo Cameras for Lunar Plume-Surface Studies. SCALPSS helps scientists see how the lunar regolith gets blown around during landings. It helps scientists to measure the size of the regolith pieces and the amount that flies up into the air during landing.
      The more NASA knows about how regolith behaves, the better they can plan for safe missions!
      Career Corner
      Many types of scientists and engineers work together to understand lunar regolith. If you want to study space, here are some cool jobs you could have!
      Planetary Geologist: These scientists are like detectives. They study how the things in space were formed, how they have changed, and what they can tell us about the rest of the solar system. Their work helps us understand what is in space.
      Chemist: Chemists look at space rocks and space dust. They want to know what these materials are made of and how they were created.
      Astrobiologist: Astrobiologists are studying to find clues of life beyond Earth. They study space to find out if life ever existed – or could exist – somewhere else in the universe.
      Planetary Scientist: These scientists use pictures, data from spacecraft, and even samples from rocks and dust to learn about other worlds. They explore space without ever leaving Earth!
      Remote Sensing Scientist: These scientists use satellites, drones, and special cameras to study planets from far away. It is like being a space spy who looks for clues from above.
      Engineers: Engineers solve problems! Civil engineers, materials engineers, and geotechnical engineers work together to understand how regolith can best be used for building materials and get useful resources on the Moon.
      Explore More
      Making Regolith Activity
      Watch: Mitigating Lunar Dust
      Watch: NASA SCALPSS
      Watch: Surprisingly STEM: Exploration Geologist Surprisingly STEM: Moon Rock Processors
      Explore More For Students Grades 5-8
      View the full article
    • By NASA
      When future astronauts set foot on Mars, they will stand on decades of scientific groundwork laid by people like Andrea Harrington.  
      As NASA’s sample return curation integration lead, Harrington is helping shape the future of planetary exploration and paving the way for interplanetary discovery.  
      Official portrait of Andrea Harrington. NASA/Josh Valcarcel Harrington works in NASA’s Astromaterials Research and Exploration Sciences Division, or ARES, at Johnson Space Center in Houston, where she integrates curation, science, engineering, and planetary protection strategies into the design and operation of new laboratory facilities and sample handling systems. She also helps ensure that current and future sample collections—from lunar missions to asteroid returns—are handled with scientific precision and preserved for long-term study.  
      “I am charged with protecting the samples from Earth—and protecting Earth from the restricted samples,” Harrington said. This role requires collaboration across NASA centers, senior leadership, engineers, the scientific community, and international space exploration agencies. 
      With a multidisciplinary background in biology, planetary science, geochemistry, and toxicology, Harrington has become a key expert in developing the facility and contamination control requirements needed to safely preserve and study sensitive extraterrestrial samples. She works closely with current and future curators to improve operational practices and inform laboratory specifications—efforts that will directly support future lunar missions. 
      Andrea Harrington in front of NASA’s Astromaterials Research and Exploration Sciences Division Mars Wall at Johnson Space Center in Houston. Her work has already made a lasting impact. She helped develop technologies such as a clean closure system to reduce contamination during sample handling and ultraclean, three-chamber inert isolation cabinets. These systems have become standard equipment and are used for preserving samples from missions like OSIRIS-REx and Hayabusa2. They have also supported the successful processing of sensitive Apollo samples through the Apollo Next Generation Sample Analysis Program. 
      In addition to technology development, Harrington co-led the assessment of high-containment and pristine facilities to inform future technology and infrastructural requirements for Restricted Earth Returns, critical for sample returns Mars, Europa, and Enceladus.
      Harrington’s leadership, vision, and technical contribution have reached beyond ARES and have earned her two Director’s Commendations.   
      “The experiences I have acquired at NASA have rounded out my background even more and have provided me with a greater breadth of knowledge to draw upon and then piece together,” said Harrington. “I have learned to trust my instincts since they have allowed me to quickly assess and effectively troubleshoot problems on numerous occasions.” 
      Andrea Harrington in Johnson’s newly commissioned Advanced Curation Laboratory. Harrington also serves as the Advanced Curation Medical Geology lead. She and her team are pioneering new exposure techniques that require significantly less sample material to evaluate potential health risks of astromaterials.  
      Her team is studying a range of astromaterial samples and analogues to identify which components may trigger the strongest inflammatory responses, or whether multiple factors are at play. Identifying the sources of inflammation can help scientists assess the potential hazards of handling materials from different planetary bodies, guide decisions about protective equipment for sample processors and curators, and may eventually support astronaut safety on future missions. 
      Harrington also spearheaded a Space Act Agreement to build a science platform on the International Space Station that will enable planetary science and human health experiments in microgravity, advancing both human spaceflight and planetary protection goals.
      Andrea Harrington at the National Academies Committee on Planetary Protection and Committee on Astrobiology and Planetary Sciences in Irvine, California. Harrington credits her NASA career for deepening her appreciation of the power of communication. “The ability to truly listen and hear other people’s perspectives is just as important as the ability to deliver a message or convey an idea,” she said.  
      Her passion for space science is rooted in purpose. “What drew me to NASA is the premise that what I would be doing was not just for myself, but for the benefit of all,” she said. “Although I am personally passionate about the work I am doing, the fact that the ultimate goal is to enable the fulfillment of those passions for generations of space scientists and explorers to come is quite inspiring.” 
      Andrea Harrington and her twin sister, Jane Valenti, as children (top two photos) and at Brazos Bend State Park in Needville, Texas, in 2024. Harrington loves to travel, whether she is mountain biking through Moab, scuba diving in the Galápagos, or immersing herself in the architecture and culture of cities around the world. She shares her passion for discovery with her family—her older sister, Nicole Reandeau; her twin sister, Jane Valenti; and especially her husband, Alexander Smirnov.
      A lesson she hopes to pass along to the Artemis Generation is the spirit of adventure along with a reminder that exploration comes in many forms.  
      “Artemis missions and the return of pristine samples from another planetary bodies to Earth are steppingstones that will enable us to do even more,” Harrington said. “The experience and lessons learned could help us safely and effectively explore distant worlds, or simply inspire the next generation of explorers to do great things we can’t yet even imagine.” 
      Explore More
      2 min read Hubble Captures Cotton Candy Clouds
      This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky…
      Article 4 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
      Article 5 days ago 2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds 
      Noctilucent or night-shining clouds are rare, high-altitude clouds that glow with a blue silvery hue…
      Article 5 days ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Lunar Reconnaissance Orbiter Camera (LROC) imaged the landing area of the ispace SMBC x HAKUTO-R Venture Moon Mission 2 RESILIENCE lunar lander which is slated to land on the surface of the Moon no earlier than June 5, 2025 (UTC). This view of the primary landing area is 3.13 miles (5,040 meters) wide and north is up. The site is in Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges. Mare Frigoris formed over 3.5 billion years ago as massive basalt eruptions flooded low-lying terrain.
      Share
      Details
      Last Updated May 16, 2025 Related Terms
      Earth's Moon Goddard Space Flight Center Lunar Reconnaissance Orbiter (LRO) View the full article
    • By NASA
      NASA named Stanford University of California winner of the Lunar Autonomy Challenge, a six-month competition for U.S. college and university student teams to virtually map and explore using a digital twin of NASA’s In-Situ Resource Utilization Pilot Excavator (IPEx). 
      The winning team successfully demonstrated the design and functionality of their autonomous agent, or software that performs specified actions without human intervention. Their agent autonomously navigated the IPEx digital twin in the virtual lunar environment, while accurately mapping the surface, correctly identifying obstacles, and effectively managing available power.
      Lunar simulation developed by the winning team of the Lunar Autonomy Challenge’s first place team from Stanford University.Credit: Stanford University’s NAV Lab team Lunar simulation developed by the winning team of the Lunar Autonomy Challenge’s first place team from Stanford University.Credit: Stanford University’s NAV Lab team Team photo of NAV Lab Lunar Autonomy Challenge from Stanford UniversityCredit: Stanford University’s NAV Lab team The Lunar Autonomy Challenge has been a truly unique experience. The challenge provided the opportunity to develop and test methods in a highly realistic simulation environment."
      Adam dai
      Lunar Autonomy Challenge team lead, Stanford University

      Dai added, “It pushed us to find solutions robust to the harsh conditions of the lunar surface. I learned so much through the challenge, both about new ideas and methods, as well as through deepening my understanding of core methods across the autonomy stack (perception, localization, mapping, planning). I also very much enjoyed working together with my team to brainstorm different approaches and strategies and solve tangible problems observed in the simulation.” 
      The challenge offered 31 teams a valuable opportunity to gain experience in software development, autonomy, and machine learning using cutting-edge NASA lunar technology. Participants also applied essential skills common to nearly every engineering discipline, including technical writing, collaborative teamwork, and project management.
      The Lunar Autonomy Challenge supports NASA’s Lunar Surface Innovation Initiative (LSII), which is part of the Space Technology Mission Directorate. The LSII aims to accelerate technology development and pursue results that will provide essential infrastructure for lunar exploration by collaborating with industry, academia, and other government agencies.
      The work displayed by all of these teams has been impressive, and the solutions they have developed are beneficial to advancing lunar and Mars surface technologies as we prepare for increasingly complex missions farther from home.” 
      Niki Werkheiser
      Director of Technology Maturation and LSII lead, NASA Headquarters
      “To succeed, we need input from everyone — every idea counts to propel our goals forward. It is very rewarding to see these students and software developers contributing their skills to future lunar and Mars missions,” Werkheiser added.  
      Through the Lunar Autonomy Challenge, NASA collaborated with the Johns Hopkins Applied Physics Laboratory, Caterpillar Inc., and Embodied AI. Each team contributed unique expertise and tools necessary to make the challenge a success.
      The Applied Physics Laboratory managed the challenge for NASA. As a systems integrator for LSII, they provided expertise to streamline rigor and engineering discipline across efforts, ensuring the development of successful, efficient, and cost-effective missions — backed by the world’s largest cohort of lunar scientists. 
      Caterpillar Inc. is known for its construction and excavation equipment and operates a large fleet of autonomous haul trucks. They also have worked with NASA for more than 20 years on a variety of technologies, including autonomy, 3D printing, robotics, and simulators as they continue to collaborate with NASA on technologies that support NASA’s mission objectives and provide value to the mining and construction industries. 
      Embodied AI collaborated with Caterpillar to integrate the simulation into the open-source  driving environment used for the challenge. For the Lunar Autonomy Challenge, the normally available digital assets of the CARLA simulation platform, such as urban layouts, buildings, and vehicles, were replaced by an IPEx “Digital Twin” and lunar environmental models.
      “This collaboration is a great example of how the government, large companies, small businesses, and research institutions can thoughtfully leverage each other’s different, but complementary, strengths,” Werkheiser added. “By substantially modernizing existing tools, we can turn today’s novel technologies into tomorrow’s institutional capabilities for more efficient and effective space exploration, while also stimulating innovation and economic growth on Earth.”

      FINALIST TEAMS
      First Place
      NAV Lab team
      Stanford University, Stanford, California


      Second Place
      MAPLE (MIT Autonomous Pathfinding for Lunar Exploration) team
      Massachusetts Institute of Technology, Cambridge, MA


      Third Place
      Moonlight team
      Carnegie Mellon University, Pittsburgh, PA
      OTHER COMPETING TEAMS
      Lunar ExplorersArizona State UniversityTempe, ArizonaAIWVU West Virginia University Morgantown, West VirginiaStellar Sparks California Polytechnic Institute Pomona Pomona, California LunatiX Johns Hopkins University Whiting School of EngineeringBaltimore CARLA CSU California State University, Stanislaus Turlock, CaliforniaRose-Hulman Rose-Hulman Institute of Technology Terre Haute, IndianaLunar PathfindersAmerican Public University SystemCharles Town, West Virginia Lunar Autonomy Challenge digital simulation of lunar surface activity using a digital twin of NASA’s ISRU Pilot ExcavatorJohns Hopkins Applied Physics Laboratory Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      NASA’s Lunar Surface Innovation Initiative
      Game Changing Development Projects
      Game Changing Development projects aim to advance space technologies, focusing on advancing capabilities for going to and living in space.
      ISRU Pilot Excavator
      View the full article
  • Check out these Videos

×
×
  • Create New...